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Abstract: We prove that for solutions to the two and three dimensional incompress-

ible Navier-Stokes equations the minimum scale is inversely proportional to the square root ,",

of the Reynolds number based on the kinematic viscosity and the maximum of the veloc-

ity gradients. The bounds on the velocity gradients can be obtained for two dimensional •

flows, but have to be assumed in three dimensions. Numerical results in two dimensions •-'

are given which illustrate and substantiate the features of the proof. Implications of the

minimum scale result to the decay rate of the energy spectrum are discussed.
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1 Introduction

p

We consider solutions to the incompressible Navier-Stokes equations

ut + UUL + VuVu + wu, +V p = VAu, V > 0,

U, + vy + W, = 0,

on a 2w-periodic square, where u = (u, v, w) is the velocity vector, p the pressure

and v the kinematic viscosity. Solutions of the Navier-Stokes equations for small

viscosity are usually turbuleni; such flows posses a lot of structure in both space

and time. The viscosity of the fluid controls the level of turbulence within a flow

by affecting the energy dissipation. As the viscosity is decreased the size of the

smallest features, or scales, diminishes. The relation between the viscosity, the

minimum scale and the total energy dissipation is of fundamental interest for the

understanding of turbulence.

The mathematical theory for the Navier-Stokes equations is not complete for

three dimensional flows: the global regularity is not known and no global bound for

the velocity gradients is available. However, both these results are known in two

space dimensions. Whether the results from two-dimensional flows are of physical

relevance is open to discussion since, in the absence of viscosity, flows in two di-

mension conserve both energy and enstrophy, while in three dimensions only the

energy is conserved. Nevertheless, results on two-dimensional turbulence may be of

significance for large scale oceanographic and atmospheric motions.

Assuming global regularity, we relate the minimum scale of the flow to IDuI,

the global bound of the velocity gradients. Our main result, precisely stated in

theorem (2.1), is that the minimum scale is essentially no smaller than
-'..

- - 1/2 9*~v

Amin,, = tl/'/Dul. /

By comparison, a commonly accepted minimum scale for two dimensional flows,

A2D, (see Lilly [19], Orszag [20]), is based on the total dissipation rate of the en-

strophy per unit volume. The enstrophy is defined as the square of the L2-norm of

the vorticity. From dimensional arguments it follows that

A2D = V'I/2 /7 11S6,

S
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where 2ff141 1 Idd

is the total rate of enstrophy dissipation per unit volume and is the vorticity.

In three space dimensions the corresponding minimum scale is the Kolmogoroff

dissipation scale [15]

AsD = V3 /4/C1 / 4 ,

where

e= 2vJ ] Ilu. I," + Ilu,1I,' + Ilu.lIdzdydz,

is the total rate of energy dissipation per unit volume.

The estimates for the minimum scale can be used to determine the decay rate

of the energy spectrum, assuming that a power law does in fact exist.

From our results in two dimensions we conclude that the energy spectrum,

E(k), behaves like k-s when there is a maximum rate of enstrophy dissipation in

the flow. The k-3 power law is in accordance with the Batchelor-Kraichnan theory

of enstrophy cascade [3] [16]. The high rate of dissipation can not remain for long

times without the flow disappearing. Indeed, numerical experiments show that the

solutions rearrange themselves into organized structures which dissipate enstrophy

at a much smaller rate. Saffman's work [22], which predicts a power law k- 4 ,

seems to describe the behavior of the system at this later stage of evolution. Our

theory does not predict the power law but only relates it to the rate of enstrophy

dissipation; the k- 4 law would correspond to q of order A1/ 2.

In three space dimensions there is no a priori bound for IDu,. o . However, if S

we assume that

IDuI ,,, v- 1 1 2 ,

then when the energy dissipation rate e is of order one, we obtain the Kolmogoroff

power law, E(k) = k- 5 l ', and the Kolmogoroff scale Am,, = A3D = .

Some of the first calculations on two-dimensional turbulence were performed by

Lilly [19], Fox and Orszag [9], Herring, Orszag, Kraichnan and Fox [12], Fornberg [8],

and Barker [1], among others. More recent computations on meshes of up to 1024 x

1._
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1024 points are described in, for example, Brachet, Sulem [7], Brachet, Meneguzzi,

and Sulem 16], Herring, and McWilliams [11] and Bensi ef al [4]. In some cases the

small viscosity limit of the equations was approximated by the continuous removal

of the high frequency Fourier coefficients [8]. In other cases the true dissipation

term is integrated although some extra smoothing of high frequencies is sometimes

required to suppress the growth of aliasing errors [1]. Another approach is to replace

the viscosity term by a super-viacosiil, that is a higher power of the Laplacian

operator [7], [11]. This operator allows simulations with a formal viscosity which is

much smaller. The minimum scale is nevertheless comparable to the computations

presented in this paper.

The numerical simulation of three dimensional flows is still limited by the

power of current computing machines. Currently, the largest three dimensional

simulations seem to have been performed on 1283 meshes. However, by exploiting

the symmetries of the Taylor-Green problem, Brachet et al. were able to effectively

solve with a 256' resolution [5]. They find the slope of the spectrum to be least

steep when the rate of energy dissipation reaches a maximum. The numerical results

seem to agree at this point with the Kolmogoroff scale. For further references on

three dimensional computations see the review article by Hussaini and Zang (14].

We restrict ourselves to two dimensional simulations. Our numerical approach

has been to attempt to faithfully solve the viscous Navier-Stokes equations. The

computations were performed using the pseudo-spectral method, Kreiss and Oliger

[18], and Orszag [21]. There is no extra viscosity added to the numerical simulation

through smoothing or chopping of the high frequencies, although the fourth-order

predictor corrector time integrator produces a small amount of it. Numerical simu-

lations are used to confirm the theoretical estimates and to show that the estimates

can be achieved for certain initial conditions. Results are shown for the time de-

velopment of a flow which initially is maximal dissipative. We also show results of

forced problems. In this case there is no easy a priori bound for the maximum norm

of the vorticity. We found numerically that the forcing should be proportional to

.1
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the viscosity in order to obtain order one velocities. More numerical work on this

subject is still necessary.

In section 2 we present the analytical results. In section 3 we present numerical

computations in two space dimensions which substantiate and illustrate various

features of the proof. Finally, in section 4 we discuss the implications of the

minimum scale result to the decay rate of the energy spectrum.

2 Analytical Results

In this section we will prove some results about the rate of decay of the Fourier

coefficients for solutions of the incompressible Navier-Stokes equations,

ul + UU, + Vuy + Wu" + Vp = iAu, v > 0, (2.1a)

u, + VY + WS = 0, (2.1b)

on the region f =: {0 < z,y,z < 2w} and for t > 0. We assume that u =

(u(x, f), v(x, t), w(x, f)) is 2ir-periodic in x - (z, y, z).

At t = 0 we give the initial data

u(x, 0)=uo(x) , V.uO=0.

For simplicity we assume that

fauOdx =0,

which implies

fnu(x, t)dx = 0 for t > 0. (2.2)

We assume that (2.1) has a bounded solution for all times and want to show

that the smallest scale is essentially proportional to (v/Du.)' / ' . Here

IDul. =supJDul. and IDul.. = sup(0u/Ozl,I0u/Oyl,I8u/8zI).

In general let

DPu = OPU

OZP1 OyP2 L9z Pa
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denote any derivative of u of order p, where p = p, + P2 + P3.

We are interested in the case when v < 1 and IDuLj > const > 0. Let us

further assume that for every natural number p there is a constant C. such that

the initial conditions satisfy the bounds

8'u 2 8u 2 8ju 2
max H(O) =: max (II-.(., 0)112 + ll--(., 0)12 + ll-(.,0)112) < C,,

O<j!5p 0<,<sp 8t y' (-, 0) +1 "0 1u
(2.3)

Here IflI, = sup.,n If(x)I denotes the maximum norm and

(fg) = fn f 'g dx , IjfjI2 = (f,f)

the L 2-scalar product and norm. Then we prove

Theorem (2.1): We assume (2.3) holds and develop u into a Fourier series

u(x,t) = Zi(k,t)e'<k'x>, k = (k ,k2 ,k3 ).
k

For every natural number j and any real number a > 0 there are constants K and

i? which depend on j, nd C, (t = 1(j,,a)), such that

supfia(k,t)I2 < K -I-UI lJ
9>0 Id a IkI~i

and

sup lfi(k,t)l12 < K IDul.

t>O~~. - ,.-k~i

The estimate of the theorem can be rewritten in the form

sup lC~k, t)12 < k D I ,2 ' '...

>o -Q ,, Ikl

We see that the spectrum becomes vanishingly small once IkI > (IDul /a')1' 2 with

Ifi(k,t) decaying faster than any power of (l-bu1/a')1/21kI'-. It is natural to define

the minimum scale of the flow to be proportional to (t'/Duj.) 1/ 2 .

N-

It
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In three space dimensions there is no a priori bound for IDul.. One can

speculate what the right order of magnitude is. For example, if we assume that

IDulo - v-112,

we obtain

sup Ifiik, t)j2 :5 K I-uI (i' 4 1k)

which corresponds to the Kolmogoroff scale [19] of ,,, l .

In contrast, for two space dimensions an a priori bound for IDulb. can be

obtained. The vorticity, = - V,, which satisfies

4j + U4- + ",y = VA4,

obeys the maximum principle

14100 = sup 14(x,t)I < sup 14(x, 0)1.

Therefore, assuming that the initial data satisfy

sup 14(x, 0)1 !5 1, (2.4)

we shall prove that IDul. is essentially bounded independent of V, in the sense

that for every > 0 there is a constant K, = K1 (3) such that

IDul, < Kiv-0.

Thus if the initial data have derivatives of order one then the smallest scale is

essentially of the order v,/. -

Our proof is also valid for Burger's equation. In this case one can prove that 0

IDulo. :_ const P-/ sup IDu(r, 0)1,,.

Thus our result predicts that the minimum scale is of order v,-. This bound can

be attained in the presence of shocks. e .%

N
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2.1 Estimates for p < 3

From now on we shall assume that an estimate for IDul. exists. Integration

by parts give us the basic energy estimate

-. -JJuJJ' = -B

2 F81v'

where OPU(, t)2 OP(-, ) 0OU(-, t)

H2 = H( = j'u( + u11" 111 + 11 V. (2.5)

Since by assumption (2.3), jlu(., 0)112 < cmnat, it follows

2v j H2(t)dt < Ilu(., 0)112 < cona and IIu(., t)112 < IlIu(., 0)112 < cona. (2.6)

Now differentiate (2.1). For any first space derivative Du we obtain

20IIDuI12 + I1=-2(Du. I+ 2IDu, 1" + IIDu112),

where

I= (Du, D(uu. + vu, + wu,)) = 11+///,

II = (Du, uDu. + vDu, + wDu.),

III = (Du, Du u. + Dv u, + Dw u.).

Integration by parts and V • u = 0 shows that II = 0. Again by integration by

parts we obtain

III < const IDul ,Hl.

Therefore

2 lIDuI < cont IDuI,,H2 - v(IlDu.l + IIDu,112 + IIDuII2),

that is 0

2R0 H < conat DulIH12- vH2.

Integrating the last inequality with respect to t gives us,

H2(t) < H2(0) + cona Dulo H 2(r)dr 2v H'(r)d. -

20
_o -, .

n N N. -1
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Therefore by (2.3) and (2.6)

I(t) < cona IDii I. and v H2 (t)dt < o IDuIK (2.7)

For the second derivatives we obtain

1 0lDu12 + I = -v(IID 2u.II' + IIDu, II2 + IID 2u. 11),
2 0t

where

I =(D 2u, D2(uu. + vu + wu.)) = 1I + III + IV,

II =(D2u, uD 2u. + vD 2 U, + wD 2u.) = 0, ,

III =2(D u, DuDu. + DvDu, + DwDu.) < onat IDuI.H,

IV =(D u,Du u. + Dv u, + D~w u ) < conat IDuI.H2.

Therefore,
1 0 H2 < const IDuI.H2 - vH3.
2 0t -

Integrating the last inequality with respect to i and using (2.3), (2.7) gives us

H(t) < canalDut and v H(t)dt <~ Dun~ (2-8)
2 P2f 0 - (2.8

For the third derivatives we obtain

-(D u, D 3u)t + I = -v(IDnu.II 2 + IID~u, 112 + IIDu.1 ll'),
2

where by Leibniz's rule
----... ._.

I = (D 3u, DS(uu. + vu, + wu,)) --II + III + IV + V,.,<..,

II = (D 3 U, uD3U. + vD 3 u, + wD u) = 0, . "D'

III = 3 (Du, DuD + Dv Du, + Dw Du) < conat IDuI,.H3,

IV=3 (D Du,Du Du. + Dv Du, + D'w Du.) <onstIDuI.H4 H2,

V = (Du, Dan u +D D~ u.) < conat IDuI,,,,H.

~~ dr 4i I-.1 . . . .~ .. *- ~ - ... -. . ,d ~. . .
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Therefore

< const IDuI[.(H + H4 H2 ) -VH,

<const IDuI.H32 +±consi IDul'.~ j!vH2

thus using (2.3), (2.7) and (2.8)

H(t) _ const V3 and v H 2 (t)dt < conDt -3 (2.9)

2.2 The estimates for general p

We now prove theorem (2.1) for arbitrary p. First we obtain energy estimates

for H, in terms of IDjul., 1 < j _< max(l, [(p - 1)/3]). These estimates are used

to obtain bounds for IDiuIoo in terms of IDul.,. Finally improved estimates are

obtained for Hp, ID'uK, and ID'ul. using interpolation inequalities; the theorem

then follows. We start with

Lemma (2.1): For every p there is a constant K. such that
0

I(D'u,DP(uu. + vu, + iouj)

-ax(l,[(p- 1)/3])

< K. IDul,/H 2 + HP+i IDjul.H,,_ .

Here

[z] - largest integer < z and ID'ul. = max IDkuI.
:,Jkl=j

Proof: We need to estimate expressions of the form

(DPu, DP-u Dku. + DP-k Dku, + DP-' Dk'u) for k = 0, ... ,p - 1.

0
We integrate by parts to decrease the order of D'u. In doing this the order of

DP'-u, DP-kv and DP-'w or the order of Dhu., Dku. and D'u, will increase.

For each new term generated through integration by parts, .

(D9u, Du Dqsu*) + (D'u, Dv D 3u,)+ (Dqu, D w DuI),.



we can decrease the order q and increase one of q2 or q3 until one of the following

conditions is satisfied:

(1) q- 1 < qs : q and q2 < q S

(2) q q2 _q+landqs<q-1

Note that in case (1) if q3 = q then

(DqU , flt2 uD~u + D9v~u + Dq3 wDqU.) =0.

It follows that

I = (D,,, DP(,u.. + v%,, + w,,,))

can be written as a sum of terms

A := (Dqu, D2P- 2 q+1u Dq-lu. + D 2 P- 2 q+ll vDq-lU,, + D2- -2q+lW Dq-lu")'

I < 2p - 2 q+ I1 q,

B := (D u, D u D 2 P -. l + Dqlv D ,-2 -l D9+w D 2 2 q-luz),

1 < 2p - 2q - 1 < q-,

C := (Dqu, DOu D 2"'-2 u. + Dqv D 2 -2 qU + Dw D 2 -2u),

0 < 2p - 2q:5 q - 2 .

Expression A: If 2p - 2q + 1 = 1 then the estimate follows, otherwise integration

by parts is applied to expression A,

A = (DP-u,DP- +l (DquDq-u.) ) + (D-v, D - q+1 (DquD q-u,) )o
+ (DPQw, DP - +i (DQuDq-lu.))

to reduce the order of the factors D 2 -29+2 , ID2-2q+Ila D 2 p- 2 q+l . In this

way we can write A as a sum of terms

(Dqlu, DP-qu D9-U + DP- qv Dq-lu, + D7q Dq2l1U.),
waywe

where

p-q 1 , q,<p+l, and q1+q2 =p+q+l.
E4

I'. IA _'

0md

t', , I

a_',-'-., -. ' . .-. <' ",3'-'. -'; '. -. , .. ',.ca ,-\ . " ",, . .... ' - ' ,' , . * a'.- ', . '- .: * -'a.. a-kJ- 'q
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Also, 1 < 2p - 2q + 1 < q implies 5 1 4 b

p-q<max 1,[ (-)].-

The required estimates can be obtained in the following cases:

(i) If p - q = 1 then either q, = q2= p or one of the q, = P+ 1 and the other is

equal to p - 1.

(ii) One of the q is equal to p + 1.

When neither (i) nor (ii) is satisfied then qj < p + l and p - q > 1, and we can

reduce DP - further. This shows that A can be estimated in the desired way.

Expression B: Correspondingly, by reducing the order of D 2p - 2q-l u,, D 2 P- 2 - 
1ur

and D2P- 2q-lu, B can be written as sum of terms

(DQlu, Dq2u DP-q-ltu + Dqv DP-q-l + Dq2w DP-q-lu.) =I,

where "

qj <p+l , ql+q2 =p+q+l and p-q-l>0.

Also 2p - 2q < q implies 0 < p - q - 1 < (1 (p - 3)]. Il can be estimated in the ,9

following two cases:

(i) Ifp- q- 1 =0 then ql =p+l,q2 =p- 1 orql =q2 =p, and

II < const IDulkH+H,-., or

2UHI < const I D ui ,H ,.  
. . .

(ii) If q= p + or q2  p + L.

Otherwise q, < p + I and p - q - 1 > 0 and hence we can diminish p - q - I further. •

Therefore we obtain the desired estimates for B. , 5, 5

Expression C: Integration by parts allows us to diminish the order of D'P-9u %

obtaining terms of the form
%r. see'

(D91u, D92u Dp-q-lu. + D' 2v DP-q-luY + D9-w DP-9-lu.) %

where

q, <p+ , ql+q2 =p+q+l and p-q-1>0.

' 
N :

-
~ , , .. .
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Using the same argument as for B we obtain the desired estimate. This proves the

lemma.

Differentiating (2.1) p-times gives us

t F(Du, Du) + (Du, D(uu. + tur + Wu,)

= -v(IID"u. 12 + IID"u,11' + IIDu, 11')

Therefore we obtain from lemma (2.1)

8 H.<ccmat( IDulooH,+ H+i ID~ulooH,_i) -2vH;+i
jl

( lm-ax(1,[(p- 1)/3])

<conat IDul.H.2 + _ ID'ulH i2)
j=t

Using the notation~L? HP2(t)dt

the last inequality implies
(I max(1jg?-1)/Js ) 

H1,_() cans + IDuIL,+- ID+u-)2L,- (2.10)

and
( -Vuo -Dlo (1 ,(,[(,- 1)/s])/= _____'

L,+,_< cont + L + 1 IDjUIO Lj,- (2.11)
"I + 1  ;2

To begin with let us obtain estimates for H. and L,+,, for p = 4,..., 7. In most %

applications this is all what is needed. From our previous results we know that
ft5

I DuV ndL 4 coa IDul -

L3 < const and L4 <ont.

Therefore (2.10) and (2.11) give us

(U--2 IDul

H2 (t) <conat uD__ 1-2 L < coDt LI4 ,.

AIDul. 1 2 I~ul

Ls <conL ;II+ .I l, < ,, .L < IoDt 5

a.. ~,5 vA~ Ii' 5  a,.a,.

V,*' ~ A -5 a
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The estimates for H2, Le, H2 and L 7 follow in the same way.

For p = 7 we obtain

Hi(t) ! const UK + IDuIsL 7 +ID'uIL) •

Thus we have to estimate ID ulI. By Sobolev inequalities

ID~i~ cHs +const H2ID'ul' < cH'+ + H; -

and we obtain for c = Hj/H,+s re

ID'u' < const H,+3Hp. (2.12)

In particular _____

3U12 
D-u 19/2

D~ < conaf HeH 3 !5 conat 0D./

Now we use the usual interpolation inequality (see for example [10])

lDui < ID'u, pl+ conal E-C(' -)I(' Dulj , 1 _ . <0 ,

which gives us for e = (1Dul2/IDulI)(i - )/(P- ')

IDjuj2 < conal (IDPu2)(-)/(P-1)(IDu12)(p- j)/(p- ). (2.13)

For j =2, p = 3 we obtain

ID2u[ < conal (ID'uI.) 1/2(IDu ) /1 2 < cons iu ' (2.14)

Therefore ., /4

S7+1/4 .7+114

H2( t _ cons l ul. and L s < conat fD +u I,
7,V6+1/4 V9+1/4

Using (2.14) we can in the same way estimate HS and H2. These estimates are

not as sharp as required by theorem (2.1). To obtain the required estimates we

have to estimate H2 for general p and then improve the lower order estimates using

interpolation inequalities.

. . . . . . .. . . %%
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Using (2.10) and (2.11) recursively and the estimates for H. and L,+, for p _ 6

we obtain -6

Lemma (2.2):

.12 -- 2 - -2k

H2 "'const I ,...jD"uj,,Du , (2.15)

where the sum is over all {k, j,pi,q) aatisfying the conatraints "

S-p + -L(, - ) -2k + .q*,,

i= i=O

I< ji<pi/3] , pj+=pi-ji-l-q , O<qi<p,-j for i=1,...,k

O<qo<p+l , =, , p, = p-qo , k > o.

Note that rh = p + 1 for p < 5.

Proof: We first obtain estiamtes for L,+2 from (2.11). H2+1 is bounded by a, times

this estimate for L,+ 2.

* ~max(ij[p/3])___L, 4 ,_< coit (j]-ffGj'+ 1/9+2 + (1-./)L,+ 1 + E-2  IDiuI.L,+,-j

!cons( A + B + )

C

where we have labeled the three terms on the right hand side as A, B and C. In the

recursive reduction of L,+2 we must consider all possible terms which may arise;

at each new stage one must consider the effect of using expression A, B or C. In

the general case one chooses B qo-times followed by term C with, = ji, then B S

q1 -times, C with j = j2 and so on until finally finishing with term A or B and using r

the estimates for L. with p < 6. In this fashion the general term will be

,j -T u. ID-o
0 2 2 j "V" * ,+ .

=fD -hu 12 ... .57-t - 3 Du ..%]

.5 =I~i2U 00~Jiu Orlqirg+2 i+l

We define r% = 2k + E q. The constraints on ji, q, and pi follow from the manner

in which the general term was obtained.

% % % %

2h.2 Z2 N
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Now we use (2.13) to estimate lDi'uI. in terms of IDP-1ul. and IDul.,

________.. t1 -2h .

Threoe y(2.) an obole iu12tE D1E PT-

IF c 0 jrk

2ti ,- "._-- 1+p ,-)/(p- 3)
const D, -l - - J D-l +

Therefore by (2.2) and Sobolev inequalities i.

2

ID,- lul, < con.,t (H, + H 1) " "

_const H2

< c o n-t m a x IDII 
+ P(1- -3 )/ (p 2 )

IDu < con t max U0
It follows that

fDP 77-U < conat max (Tiii 0 0 !

Tb (p-2

One more application of the interpolation inequalities gives for 1 < j _ p - 1

C0151 ax IDul,

f <uj const max

In order to obtain our final estimate we need to show that that 7 = mink rh

tends to infinity as p tends to infinity. Recall that

r= p + (ji -1) = 2k + q,

I <j,<_5[p,/31 , jV+j i - j,- 1 - q, 0 <q, !5_i-j, for i= 1,...,k

0< q0 !5p+ I q = pp - jk , = i-qo k k> O.

From ji !5 [p/3] !5 piV/3 it follows that I

di+= - 1 -O - I -,.

3S

, = j, ( I ( ,+, + 1) > , + 3))- q, -,.- (or +3)

,, (ipk + 3) > )'-'( + 3)- -

i=O

!0
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This last expression can be written as
(p + .i= 3)) -

k> I + logs/2 (P+ 3 h3"' i= . -

Since q, = pl, - j, > (2/3)pj, we have

2
,, = 2k+ q, 2k+ 3 p, + q,.

i=O =

Now consider the two cases

(i) FI=o (3/2)'q, > (p + 3)/2

(ii) E'6o'(3/2)'q, !_ (p + 3)/2

In case (i) it follows that

h-1 h-i

3 -(3/2)1 q > (3/2)i= L qi > (p + 3)/2
i=O i=O

h-1

E q, > (2/3)A- 1 (p + 3)/2

=> _> 2k + ( 2 / 3 )"-(p + 3)/2 0

Minimizing this last expression with respect to k ( _ 0) gives

r > consu log(p) for some const > 0.

In case (ii) we have,%

p+3k> 1+ log/ 2 2(  -3))

r, ! 2 + 21og 3 / 2( -) + (2/3)pj.2(pik + 3)

Since 0 < p, < p + 1 it follows that as a function of ph, the above expression has

the bound

> const log(p) for some conet > 0. .

Hence Y = mint, m 6 6 log(p) as p tends to infinity, for some constant 6 > 0. Thus

__ : L _ ! . :. ] _ + + i . . . . . . . - +
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Theorem (2.2): For every j _ 1 and any a > 0, we can choose p sufficiently large

so that
Il 2  IDul.,IDn,. ! < onst (2.16) -

where the constant depends on p and C+ introduced in the estimates for the initial

conditions (2.3)

By using (2.16) in (2.15) we obtain

Theorem (2.3): For every j _ 1 and any a > 0, we can choose p sufficiently large

so tha
j+aJ

H?(t) < conet (2.17)

where the constant depends on p and C,+ 1  +

Using the simple estimates for H? in terms of maximum norms gives
Theorem (2.4): For every j >_ 1 and any a > 0, we can choose p sufficiently large

so that

H:(t) < conet k (2.18)

where the constant depends on p and C,+.

Theorem (2.1) now follows from Parseval's relation.

It may seem curious that the initial conditions satisfy

IDuI.H:(O) < const iu

while we are able to prove that (2.18) holds. However, (2.18) can be derived from

(2.17) as follows (for convenience we drop the a's)

H"1 < conet .~ul.

JD'ul' < const R'+2 < conat ILUl,,
-- - P 'V+ .

and thus using the interpolation inequality (2.13)
ID~~~~~~ul ~~~~ _eot(Dul)-)/-)(u )(F-j)/(P-I) ":'.'

< conat ( IDul' )U-L)/(.-1)(DuI)

D--3 +1+2

< const '
iL

.0,,%
,,",+.-
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2.3 Estimates for two space dimensions

In this section we obtain a sharp bound for Ifbi-. for two dimensional flows.

In this case the incompressible Navier-Stokes equations can be written in vorticity

form

C, + U.G + V, - A , > 0, (2.19a)

35Ua+ Vp, = 0 i.C, (2.19b)

where t is the vorticity and u, v are the velocity components.

Lemma (2.2): The solutions of (p.19) satisfy the maximum principle

Proof: This well known result follows from the fact that at a local maximum

(minimum) of C, C. = C, 0 and C, !5 0 (_ 0).

We would first like to show that (Dul.. is bounded for all time. Note that our P.-

energy estimates of the previous section are still valid if we integrate to t = T > 0

instead of integrating to t = oo. For this section only, let us redefine the quantities

which depend on this bound on the time. For example we define

I<T
I = ® supl uu. and 1L = M;~t)dt.

We know from basic results that IDub. exists and is bounded for some finite time S

interval [0, T]. We will now derive estimates for IDul. which are independent of

a,. T. It follows from the results of the previous section that we can obtain estimates

.*, for all derivatives which are also independent of T. Then from well known results

a.we can conclude that IDul.. exists and satisfies these same bounds for all times.

Lemma (2.3): For any al > 0 there ezists a constant C(a 1 ) such that

IDul. = sup IDul. !< C(a )lt(.,0)1' '" - -O-. (2.20)
t<T

%%% % ,.%

I", % ' , 'a."".."" "" """ "n" - "

'5'",. ", -" "" " "5 ?. A /. ". 5. ." " " " .' V ." " " ,



-19- S

Proof: For any )3 with 0 < 0 < 1 we define the H61der semi-norm by

ID~f I= sup If(xi)- f(x)-

lxi X2I4 -

Using the notation

IDOule = max{lD~ul o , ID avl. }

the usual H61der estimates for the solutions of Laplace's equation (see for example

[10] ), tell us that for any p > 0 there is a constant C(O) such that

jDt-Iujo <!5 o (2.21) _NV

Also, the convexity of H6lder norms (see [13])

JDh+a1f, < conat JD"+±a fI' lD162+3f1-'t

k + a =t(kl + or) + (1 - )(k + Ct2) 1, 0 < i < 1, a,alal 0, t'."

and Young's inequality give us for any e > 0

IDul. -< cl Dul. + conan c-OlD-Oulo.,

Using the Sobolev inequality (2.12) for ID 2ul. and (2.21) we obtain

FD iiuK con at f +con at CODI1Puj.,*".

< cont +

Choosing
'a= _(_)_I* __/, . ''

IDul . ,

gives lu~S.-

___ 7/2 TTO

IDul00 <const N(3)FUC. )
IDuIT/ ,. .-:..5-

J. V.. %
.. '5 5 .5..P
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Thus

I~~uII- costV

and the lemma follows since e-- < Ie(., 0)1O.-

In two space dimensions estimates on the vorticity appear more naturally. In

[17] we proved the results of theorem (2.1) in the two-dimensional case using the

vorticity formulation of the equations. In that paper the quantities

J2  112 + - 2 (2.22)

take the place of the H.2. The estimate corresponding to (2.18) is

-p424 rJ2(i) <_ const H2'+1(t) < cont 'I" Du , (2.23)

We refer to the J. in the section on numerical results.

W

r.

*',

0

. .... . . .€#,': € /r, - " ""., " ....... "" . .... I" t.- -, -, -,,.' "' ' " ""': " 'N " m" " ":-. ,,/.,'. '.. , ' ., z...._.z--'.'-'-,'-';,- -p
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3 Numerical Results

We first describe the procedure we use to itumerically solve the two-dimensional

Navier-Stokes equations. In brief, we discretize in space using the Fourier (pseudo-

spectral) method and solve in time using a fourth order predictor-corrector method.

The equations are solved in Fourier space and the diffusion term yAw is treated in 'A

a fully implicit manner. We now proceed to present more details.

We solve the two-dimensional incompressible Navier-Stokes equations in the

vorticity stream function formulation:

6, + (U0). + (aC), = vAC + f (3.1a)

A' = -4, (UV) = (€,,-0.). (3.1b)

The computational domain is taken to be a 21r periodic square. The solution is

represented as a truncated Fourier series with w denoting the discrete approximation

to 4 and c denoting the discrete Fourier transform of w:

Ni-1 4N2-1

S, ,,t) (k 1,k2, t(ki,k,,e("' +") .

Similarly the Fourier transform of 0 and f are denoted by 0 and f respectively.

The equation for the Feurier coefficient &,(kj,k2 ,t) is

4 9 + iki(i"d) + ik2 ("W) = -v(k + k)l ±1 (3.2a)

(k' +k') = Ca(3.2b)
0

The convolutions f"W and Q (i.e. the Fourier transforms of the products uw and vw)

are computed from &i, i and Ca by transforming to real space, forming the products

and then transforming back to Fourier space, (pseudo-spectral method). It is not

hard to see that the computation of & , can be done with five two-dimensional fast

Fourier transforms (FFT's). In fact, only four FFT's are needed since one can write

(reference Basdevant 121)

.- t,. = ((,.) 2 - (,,))., - [.,,).. - (,.,,),,. N

w. ~*%*

*1* ~ *~ ~:~~r*~* **~*** - -
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However, in the calculations presented here the less efficient method was used.

The equations (3.2) can be written in the form of a large system of ordinary
-b

differential equations:
dy
- = F(y,t) (3.3)

where y is the vector with components C(k1 , k 2 ).

Time stepping is performed using a predictor-corrector applied directly to equa-

tion (3.3). Let y, denote the approximation to y(nAf) and F,, = F(y, nAt). We

use the fourth order Adams predictor-corrector scheme given by

Y= Yn + -(23Fn - 16Fn... + 5Fn- 2 ) (3.4a)

Y,,+1 = Yn + A(9Fp + 19F, - 5F,-_ + F,,_2). (3.4b)

Here y. is the result of the Adams-Bashforth predictor, F, = F(y,,(n + 1)At)

and Yn+i is the corrected value obtained frown approximating the implicit Adams- 5

Moulton scheme. A single time step thus requires two evaluations of the right hand

side F. The classical fourth order Runge-Rutta method is used to obtain starting

values for (3.4). These are required initially and whenever the time step is changed.

For stability reasons one may want to integrate the diffusion term, .Aw, in an ....

implicit manner. In the Fourier representation this term is very simple and thus can

be easily treated in a fully implicit and accurate manner. We write the equations

(3.3) in the following way

dydt G(y, i) - Ay A = diag(..., u(k, + k2),..) i,

where the right hand side F has been split with A the diagonal matrix corresponding

to the diffusion term. This last equation can be written in the form

d(ey) =e tG.

Now apply the time stepping procedure (3.4) to this equation viewed in terms of the

new dependent variable eA y. After division by e t̂ the predictor-corrector scheme

which results is

yP=e-A" y,n + -t(23e-AA'G, - 16e- 2AA'Gni ±5e G.. 2) (3.5a)
12

yR+i= e- AAt Y9 + Al& 'GR 5e -2 AAIGR + e - At G,_).(3.5b) "

% %
.,

.o
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The Runge-Kutta scheme is transformed in a similar fashion. The terms

are stored and need only be recalculated when At changes. These resulting schemes

are exact in the absence of the convection terms (G = 0).

The variable time step is chosen by stability and accuracy considerations with

At chosen to satisfy the condition

At
CFmi (Jul.. + IvI.,)~ < CFLi,.. (3.6)

h

where h=2/N, (N =max(NI, N2)). The stability region of the explicit predictor-

corrector method (3.4) is shown in figure 1

Predictor Corrector P(EC)'E
P 3rd order Adams Bashforth

1.2 C 4th Order Adams iMouiton

% ..

.2

.4L

Real

Figure 1 Stability region for the predictor-corrector scheme.%

When (3.4) is applied to the model problem y~' =Ay, the time step is restricted

by (approximately) lAjAf < 1.2 if A is purely imaginary and by -AAt < 1.9 if A is

real. One expects the implicit predictor-corrector scheme (3.5) to have better sta-

bility properties than the explicit one (3.4). CFLnin and CFLmax. are the minimum

and maximum allowable values for the Courant- Friedrichs- Lewy number:

AtCFL :=(Jul. + IVIo)T h

PC I~r* 4 %0
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CFLm,, would be taken less than the stability limit for the model problem. (The

choice of h in our definition of CFL instead of the true h = 2w'/N means that we can

compare CFL directly to the normal stability limit for the model problem.) When 4

the condition (3.6) is violated the new time step is chosen so that

(jul00 + Mv1 0 )--- = CFL0 ,P.

3.1 Verification of the Numerical Approximation

In this section we present results which illustrate the accuracy of the numerical

approximation that we use. In test 1 we show that the time stepping procedure

is accurate to fourth order in At. In test 2 we consider the convergence of the

numerical solution as the number of modes is increased.

Test 1: Accuracy of the time stepping procedure

It is easy enough to choose the forcing f in the Navier-Stokes equations (3.1)

so that the true solution is known to be some given function. Numerous tests of thisS

kind were performed. In all cases the numerical solutions converged to the exact

solutions at a rate very close to fourth order in the time step At.

As a more realistic study of the convergence of the time stepping routine we

consider a sequence of calculations with fixed random initial data and decreasing p.

time steps. The initial conditions are identical with those used in section (3.2) for

the decay of random initial data. Keeping the same initial conditions, and with

NI = N2 = 128, v = 10- ', the equations were solved with three different (fixed)
,p time steps: At = .05, At = .025 and At = .0125. The computed maximum value

for the CFL number in each run was 1.2, .6 and .3, respectively. (Recall that the

stability limit for the explicit version of the predictor-corrector scheme is about 1.2

on the imaginary axis. We were able to obtain good results for values of the CFL

number as large as 1.5, which substantiates the belief that the implicit predictor-
corrector scheme has better stability properties.) We use the results from the three

runs to estimate the rate of convergence as a function of At as well as to estimate
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the actual error. We measure both the discrete maximum error and the 12 error

defined by

Iwoo-= max lw(ti,y,)l and I,' 2 : NxN (-, ,)i). 2 .

By assuming that the computed solution is converging to the true solution as O(At")

we can determine approximate values for p and the errors

E00 (t, At) := Iwcomputed(., t; At) - Wtrue(.,t; ,t)i, - O(At'),

E2 (t, At):= IWomputed(.,t; At) - Wtue(',t; At)12 = O(At').

These values are given in table I for the maximum norm errors and in table II for 'r.WOF

the 12 errors.

t Eoo(At = .05) Eoc(At = .025) Eo (At = .0125) p -

10. 0.68 x 102 0.47 x 10- 3 0.32 x 10-  3.9
20. 0.27 x 10-  0.18 x 10- 3 0.13 x I0 -  3.9
30. 0.97 x 10- 3 0.69 x 10- 4  0.49 x 10- ' 3.8 L
40. 0.69 x 10- 3 0.47 x 10- 1 0.32 x 10-s 3.9
50. 0.48 X 10-3 0.31 x 10- 4 0.20 x 10- 6 4.0

Table II - Estimated maximum errors and convergence rate: O(AtP)  %

t E 2 (At = .05) E2 (At = .025) E2(At = .0125) p

10. 0.40 x 10- 3 0.29 x 10-
4 0.21 x 10-  3.8

"20. 0.17 x 10- 3 0.12 x 10- 4  0.86 X 10- 6 3.8

30. 0.73 x 10- 4 0.50 x 10- s  0.34 x 10- 6 3.9
40. 0.56 × 10. 4  0.37 x I0- 5 0.24 x 10-6 3.9
50. 0.48 x 10-  0.31 X 10-  0.20 x 10-6 4.0_

Table II - Estimated 12 errors and convergence rate: O(At') -'.5-..

Test 2: Convergence for random initial data

We consider the computation which is described in section (3.2) under the

heading of Run 1: Decay of Random Initial Data. This computation was run with
-lhN = N 2 = 128 (w 12) and also with N =256 (w 25 ). The initial conditions for ,,,-
V ,",,
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the two runs were the same to single precision (about 6 -7 decimal digits), although

the actual computations were done in double precision. The variable time step was -6

determined by the parameters (CFLm,,, CFLpt, CFL,,X) = (.8, 1., 1.2) In table II

we indicate the maximum difference and the 12 difference between the two runs at

various times. Due to the variable time step the solutions were not compared at

exactly the same times. The difference between the times is given in the table as

t26 - t128. Note that the maximum difference between the two solutions occurs at

smaller times. Later on when the solution becomes smoother the errors are smaller.

Further details of this run can be found in the next section.

t kW2ssI0  IW256 - w12s 1o Iw266 - W12812 t266 - t128

0. 1.00 .10 x 10- 1 .38 x 10-s  0.0
10. .75 .55 x 10-1 .45 x 10- 2 +.42 x 10- '
20. .67 .20 x 10-1 .29 x 10- 2 -. 21 x 10-3

30. .60 .15 x 10-1 .21 x 2 +.23 x I0-

40. .59 .10 x 10- 1 .73 x 10- 3 +.18 x 10-4

50. .58 .73 x 10- 2 .58 x 10-3 +.23 x 10-4

60. .57 .43 x 10-2 .88 x 10-3  -. 19 x 10-3

70. .56 .51 x 10-2 .88 x 10-3  +.25 x 10- 3

80. .56 .26 x 10- 2 .38 x 10 - 3  +.37 x 10-4
90. .56 .27 x10 2  .36 x l0-3  +.12 x 10-

100. .55 .31 x 10-2  .37 x 10- 3  .62 x 10- 4

Table Il -Convergence of random initial data v, = 10- 4

r .V.-.

U..,.
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3.2 Computational Results

In this section we present the results of four different runs:

(1) Run I: Decay of random initial data, v 10-4 , N 256 and N = 128.

(2) Run II: Decay of random initial data, v = 10- , N = 512.

(3) Run III: Decay of smooth random initial data, v = 2 x 10-1, N = 256.

(4) Run IV: Random forcing, v = .5 x 10- 3, v = .5 x 10-'.

Run 1: Decay of random initial data, V = 10- 4 , N=256 and N=128.

For the first run we consider the time evolution of the Navier-Stokes equations

for random initial data. The initial conditions for the vorticity were chosen so that

ji:(kj +2) (%iC) k = I(ki, k2)I,

with a random phase. (Actually the initial spectrum was set to zero for all wave

numbers above some large value of k.) The constant C was determined by nor-

malizing the maximum value of the vorticity to be 1 at t = 0, jw(.,., O)j 1.

The value of the viscosity was taken as L, = 10- and the number of modes was

N = N 2 = 256. We show .,i

1) contour plots of the vorticity (figure 2 ). Dashed lines indicate negative contour .

values.

2) surface plots of &(kj, k2) in the cosine-sine representation. The discrete Fourier

series for ci is actually represented in the computer code as a real series in

cosines and sines. The surface plot shows the magnitude of the coefficients of

this series. The coefficients are ordered in the following manner:

C1C1  C1 81  CIC2  C1 82  CICs
11C 8181 Ie C * 1  I aes .....

C2C 1  C2 81  CZC 2  C38 2  C23 .

82 CI 8201 82 C3 8282 82C3 ...

C3C1 C381 C3 C2 C3 82  C3C$ ...

where chcl is the coefficient of cos(k z) cos(ly), c, a the coefficient of cos(k r) sin(ly).

and so on. The lowest frequency modes are located at the top of the surface

plot (figure 3 ). Only the first 128 modes are shown in the surface plots.

V V% V Ni i N N
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3) plots of the energy, enstrophy, J1, J 2, J3 as a function of time, and the decay

of the vorticity spectrum as a function of k. In figure 4 a we plot the square

root of the total energy

(1/2(llull2 + 11v 12),/2, %7

% .

the square root of the enstrophy

and

V l12J1 (t) = a-112(ii W. 11 + m11w l12)1/2 5

as functions of time. In figure 4 b we plot the normalized versions of v 112 j(t),

V2/ 2 J2 (t) and 0s/ 2 Js(t). Recall that

j2 P42 OL1
0W = 11 -1 +" 11 -

II I +~ .%-..

In each case the functions plotted are scaled so their maximum value is 1. This

maximum value is indicated on the plot as the value of Scale. In figure 4 c some :.

selected Fourier coefficients are plotted as functions of time. Finally in figure

4 d we show log-log plots of Co(k) versus k. The quantity c (k), k = 1,2,...

is defined to be the average value of jY(l, l2)j over all wave vectors (11, 12) for

which k is the closest integer to I = 1(11, 12) 1:

11-h1<1/2
a~)= Z lI'(l,, / L% "

We plot logio(Co(k)) versus loglo(k) for different times. Lines with slopes -1

and -2 are also marked. Note that if L(k) - k- = then E(k) ,, k- 2 0--

For comparison, in figures 5 - 6 , we show the results of the same run when only

half as many modes were used, N = 128. Essentially the only noticeable difference

is in the plot of the spectral decay. A quantitative comparison of the 256 and 128

runs was given in section (3.1).

Run H1: Decay of random initial data, v = 10 - , N 512. %

,, d,
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The value of v is taken as 10- 6 The initial conditions are the same as Run I.

The number of modes was NI = N2 = 512. The results are shown in figures 7 -

8 . Note that for technical reasons the contour plots were made by projecting the

solution to a 256 x 256 grid. It is interesting to compare this run (v = 10- s ) to the

previous run (v = 10-4).

Run M: Decay of smooth random initial data, v = 2 x 10- s .

In this run we begin with initial data which is much smoother than in the

previous runs. The initial vorticity spectrum is chosen so that

I~o(k,,k 2)J = Cke, ko = 3.5

with random phase. The constant C is chosen so that Iw(, ., 0)1, = 1. The viscosity

was 2 x 10- s and the number of modes was N = 256. These initial conditions are

similar to those used by Brachet and Sulem [7]. We have run for longer times than

the results shown in [7]. Plots for this run are given in figures 9 - 10 .

Run IV: Random forcing.

In this run we consider the problem when the equations are forced in a range of

low Fourier modes. For the forced problem there appears to be no easy way to obtain

a sharp bound on the maximum of the vorticity. We have found experimentally that

when the forcing is chosen to be 0(1) the solution grows and does not remain 0(1).

For example in figure 11 we show the results of a run in which the forcing f is ,

chosen so that If It = 1 and in which the initial vorticity is zero. In particular the

amplitudes and phases of the the fourier components of the forcing were chosen as

C1 C1 C1 81 CiC 2 C182 C C3 C1 83  +12 -4 -16 +4 +20 -12'

1 c 1 ** 1scI2 8182 SCs *1s +8 -24 -20 +12 +28 +4
c3c 1  c2a1 c 2 c 2  C282 c 2 cs c23s - +12 -8 +32 +24 +8 +36
82cI 8281 8c 2  2 2 82C3 =28S -12 +12 +4 +32 -4 -16
csc 1  C811 csc2 Cs2 CsC 3  c383 -4 -36 -16 -36 -24 +4 %
83 c 8381 3 2 8382 8scs 33 -20 -20 -36 +8 -28 +12 .

,,. .." .

1?1~ ~~~ '56 -'."Y:-N .-,,1, K
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where the scaling factor C, was chosen to ensure that IfJ - 1. In this run _

= 10- 3, N1 = N2 = 256 and (CFLmin, CFLopt, CFLm.x) = (.5,.8, 1.). In figure

11 b we have made plots of the maximum norms

MAX(U) = max(Iu(-, ).o, Iv(-, -, t)I)
OUa v av

MAX(DU) = max(I -( ", , t)I , (,'t)l,1  - ('.' 0 1, (',',t 1 ),

and

MAX(W) = Iw(.,-,t)I 0.

Even by time 1 - 200 the solution continues to grow.

In contrast when the forcing is chosen to be O(v) we do not see growth in the

jw(.,-,t)lo. This observation is presented in figures 12 - 13 where we have made

runs with P, = .5 x 10- 3 (N = 128) and v = .5 x 10- 4 (N = 256). The initial 9

conditions for I [ were defined by the matrix of coefficients given above but in this

case the constant C. was chosen so that fw(.,., 0)1, = 1. The forcing was constant

in time and defined from the relation

aA + f 0.

4 Discussion

We have shown that for both two and three dimensional flows the minimum
1/2/F-U101/2

scale, A,,, is essentially proportional to vx/ 2/IDu~, x/ "  We now relate this -

minimum scale to the decay rate of the energy spectrum.

Let us assume that at a given time I the energy spectrum has a power law

behavior in some range of wave numbers, the inerfial range,

E(k) , k- 20, k, = 0(1) _ k < O(1/At).

We have proved that the quantities

i-1 + A_( u , 1 8'u
= i u(, + III+ I( .1)1

00-

e P. . N- N -S
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remain of order one, provided they are initially so. When this order one bound is
achieved we call the flow maximal dissipative. Note that 2vH,2 is the rate of energy

dissipation, e, and that the rate of enstrophy dissipation I is bounded by vH'2 .

Assuming that the leading order contribution to the integral for H3(t) is deter-

mined from wave numbers in the inertial range and using the power law behavior

for E(k) we obtain

_____ ) ~ __ -_/___ IDul. 1
P+1 cP'O k'E(k)dk -+/iDul.o iDul P+1 .- 0+3/1.

In two space dimensions we know that IDulo. is essentially bounded by the

maximum norm of the initial vorticity. Let us thus assume that the initial values

are scaled so that IDul. o is of order one. In this case

P_ -1 H 2 t) '~ - s /, (4.1) 

iDu .+ P(

and for maximal dissipative flows it follows that E(k) , k- , the power law behavior

predicted by the Batchelor-Kraichnan theory [3][16]..0

In three dimensions if we speculate that IDul- 0(-'), then

H,2 ,

In this way for maximal dissipative flows, we obtain a relation between the power

law behaviour of the energy spectrum and the size of IDul.:

3 2+2

When IDuI. = O(W- 1/'), and -y = 1/2, we obtain/9 - 5/6 and E(h) - k - s / s the

power law behavior predicted by Kolmogoroff [15]. 0

We now return to the numerical results of the random initial data runs, refer-

ence figures 2 - 4 and 7 - 8. The initial conditions were chosen so that E(k) - k- ".

The numerical results show that this k - ' power law seems to remain over an initial

time interval. The numerical results further indicate that as the flow evolves, the

. ' w.''w . ,."e/"e "" , ":"z" ,. .",", " , , ",'" . " "-',. "'; .""'""" . """. ",e ... .. " ".0.
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quantities vPJ, which behave like vPH,+l, slowly decrase and the energy spectrum

steepens. In a later regime the flow is dominated by the presence of large regions

of relatively constant vorticity. There seems to be some evidence from the figures

to suggest that the quantities J' decay by a factor of about A,,. ,, = /2 , and that

1(k) - k", E(k) ~ k- . When

iHul 2(t) ~.V1.

the argument in (4.1) predicts 8 2, and is thus consistent with the numerical

results. These results are in agreement with Saffman's theory for two dimensional

turbulence [22].

In figure 1 we outline an hypothesized behaviour of vpJ2(t) for the decay of

two-dimensional turbulence. In the first stage of development of the flow, vPJ' may

show an overall increase as the flow evolves to a state of maximal dissipation. (Of

course, depending on the initial data, this maximal dissipative state may never be % %

reached.) This dissipation rate can not continue for a long time interval but must

decrease. The power law then slowly changes from k' to a more rapid decay. The 0

flow becomes organized into coherent structures, a regime with VJ2, 1/ (?)1/

and where Saffman's theory would predict E(k) _ k - 4 . This regime presumably

exists for long times, since the viscosity now plays a minimal role. This scenario is

suggested by our computations and other similar ones. In particular, Brachet and

Sulem [7] show high resolution computation with initial data

E(k) ~cke- (k/ h) 2

similar to the one presented in this paper (reference figures 9 -10). They found an

increase in the energy power law reaching a maximum at about k - .At this stage . ..

the rate of enstrophy dissipation is maximum, in accordance with our analytical 0

results.

It is conceivable that a similar scenario is present in the decay of three dimen-

sional turbulence. In two dimensions when large coherent structures are formed

the main contribution to H2(j) comes from one dimensional layers separating these " '-
p.
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structures. When the solutions across the layers have a simple structure, one can

argue that that

a/-il v 1/2

Correspondingly, in three dimensions the same argument can be made assuming that

the regions of rapid variation are concentrated along two dimensional structures of

width A,,. Thus in either case we obtain a new relation between the power law ?7.

behaviour of the energy spectrum and the size of IDuK -= ( ):

2

1+7

In two dimensions ' = 0 and we again obtain E(k) k- .If, in three dimensions

IDu. , v1/, we obtain E(k) - k-s/. Large three dimensional simulations are

necessary to confirm the validity of the assumption made on the size of IDul., on

the time evolution of H2(t) and the sharpness of our estimates.
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